Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions

نویسندگان

چکیده

We propose a new type of neural networks, Kronecker networks (KNNs), that form general framework for with adaptive activation functions. KNNs employ the product, which provides an efficient way constructing very wide network while keeping number parameters low. Our theoretical analysis reveals under suitable conditions, induce faster decay loss than by feed-forward networks. This is also empirically verified through set computational examples. Furthermore, certain technical assumptions, we establish global convergence gradient descent KNNs. As specific case, Rowdy function designed to get rid any saturation region injecting sinusoidal fluctuations, include trainable parameters. The proposed can be employed in architecture like Recurrent Convolutional etc. effectiveness demonstrated various experiments including approximation using solution inference partial differential equations physics-informed and standard deep learning benchmark problems convolutional fully-connected

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Neural Networks with Multistate Activation Functions

We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs p...

متن کامل

Neural Networks with Smooth Adaptive Activation Functions for Regression

In Neural Networks (NN), Adaptive Activation Functions (AAF) have parameters that control the shapes of activation functions. These parameters are trained along with other parameters in the NN. AAFs have improved performance of Neural Networks (NN) in multiple classification tasks. In this paper, we propose and apply AAFs on feedforward NNs for regression tasks. We argue that applying AAFs in t...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Artificial Neural Networks with Adaptive Multidimensional Spline Activation Functions

This work concerns a new kind of neural structure that involves a multidimensional adaptive activation function. The proposed architecture, based on multi-dimensional cubic spline, allows to collect information from the previous network layer in aggregate form. In other words the number of network connections (structural complexity) can be very low respect to the problem complexity. This fact, ...

متن کامل

Adaptive Activation Functions for Deep Networks

Artificial neural networks loosely mimic the complex web of nearly 100 trillion connections in the human brain. Deep neural networks, and specifically convolutional neural networks, have recently demonstrated breakthrough performances in the pattern recognition community. Studies on the network depth, regularization, filters, choice of activation function, and training parameters are numerous. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2022

ISSN: ['0925-2312', '1872-8286']

DOI: https://doi.org/10.1016/j.neucom.2021.10.036